a2 United States Patent

US009386057B2

(10) Patent No.: US 9,386,057 B2

Kent et al. 45) Date of Patent: Jul. 5, 2016
(54) APPLICATION STREAMING AND USPC oo 709/203, 205, 206, 224
EXECUTION SYSTEM FOR LOCALIZED See application file for complete search history.
CLIENTS
(56) References Cited
(71) Applicant: Numecent Holdings Ltd., Irvine, CA
(US) U.S. PATENT DOCUMENTS
(72) Inventors: O.smal.l Kent,. Surrey (GB); Arthur S. 2:§gg:géé gl 1%83? iﬁﬁ
Hitomi, Huntington Beach, CA (US) (Continued)
(73) Assignee: Numecent Holdings, Inc., Irvine, CA OTHER PUBLICATIONS
US
) Andreas Ahlund, “An approach towards User-centric Application
(*) Notice: Subject to any disclaimer, the term of this Mobility”, Aug. 28, 2009, Master’s Thesis in Computing Science,
patent is extended or adjusted under 35 Umea University Department of Computing Science.*
U.S.C. 154(b) by 247 days. (Continued)
(21) Appl. No.: 13/745,417 Primary Examiner — Vivek Srivastava
. Assistant Examiner — Normin Abedin
(22) Filed: Jan. 18, 2013 (74) Attorney, Agent, or Firm — Sheppard, Mullin, Richter
(65) Prior Publication Data & Hampton LLP
US 2014/0136601 A1~ May 15, 2014 (57 ABSTRACT
For various implementations, a first application streaming
Related U.S. Application Data client can obtain portions of an application from a application
streaming server, execute the application based on those por-
(60) Provisional application No. 61/588,102, filed on Jan. tions obtained, and provide a second application streaming
18, 2012. client (a pixel-based application streaming client) access to
the executing application using a pixel stream generated
(51) Imt.CL based on output from the executing application. Depending
GO6F 15/16 (2006.01) on the implementation, the first application streaming client
HO4L 29/06 (2006.01) could execute the application, based on the portions obtained,
T04L 29/08 (2006.01) on behalf of a user at the application streaming client, on
(52) US.CL behalf of the p.ixel-based application streaming client, or
CPC oo HO4L 65/60 (2013.01); HO4L 65/4084 POt Invarious implementations, the first application stream-
(2013.01); HO4L 65/605 (’2013 01); HO4L ing chent. and the second application streaming client can be
67/02 ('201’3 01); HO4L 67/2861.(20513 01): communicatively coupled through alocal network (e.g., LAN
S S or local WiF1), while the first application streaming client and
HO4L 67/289 (2013.01); HO4L 67/2842 the application streaming server can be communicatively
(2013.01) coupled through a wider area network (e.g., WAN or MAN).
(58) Field of Classification Search

CPC HO4AL 65/60; HO4L 65/605; HO4AL 65/4084

19 Claims, 5 Drawing Sheets

-100
v

2

Infermediary Davice

Application
Streatning Crent
1061

10622

108

Application
® & 9 Bt Cliert

Purel-Based
Application
Streaiming Orient

US 9,386,057 B2

Page 2
(56) References Cited 2009/0203368 Al* 82009 Marsylaetal. ... 455/418
2009/0204711 Al 8/2009 Binyamin et al.
U.S. PATENT DOCUMENTS 2010/0070526 Al 3/2010 Matias
2010/0138475 Al 6/2010 Frank et al.
6,343,313 Bl 1/2002 Salesky et al. 2010/0235112 Al 9/2010 Kesler et al.
6,886,169 B2 4/2005 Wei 2010/0235153 Al 9/2010 Sharp et al.
6,917,963 Bl 7/2005 Hipp et al. 2010/0250670 Al 9/2010 Wei
6,944,858 B2 9/2005 Luu 2010/0333085 Al 12/2010 Criddle et al.
7,210,147 Bl 4/2007 Hipp et al. 2011/0063500 Al 3/2011 Loher et al.
7,240,162 B2 7/2007 de Vries 2011/0066570 Al 3/2011 Kolo et al.
7,522,664 Bl 4/2009 Bhaskar et al. 2012/0066286 Al 3/2012 Heredia et al.
7,577,751 B2 8/2009 Vinson et al. 2012/0110131 Al 5/2012 Villagas Nunez et al.
8.117.600 Bl 2/2012 Roeck et al. 2012/0144386 Al 6/2012 Wookey
8.645.046 B2 2/2014 Wookey 2012/0278439 AL* 11/2012 Ahiskacccooo......... A63F 13/12
8,667,482 B2 3/2014 Bernardi 709/218
8,712,959 Bl 4/2014 Limetal. 2012/0297311 Al 11/2012 Duggal
8,768,800 B2 7/2014 Milosavljevic et al. 2013/0007227 Al 1/2013 Hitomi et al.
2001/0034736 Al 10/2001 Egylon et al. 2013/0045759 Al 2/2013 Smith
2003/0004882 Al 1/2003 Holler et al. 2013/0073775 Al 3/2013 Wade et al.
2003/0140089 Al 7/2003 Hines et al. 2014/0068022 Al 3/2014 Kshirsagar et al.
2003/0226138 Al 12/2003 Luu 2014/0169471 Al 6/2014 He
2004/0024845 Al 2/2004 Fishhaut et al.
2005/0198647 AL 9/2005 Hipp etal. OTHER PUBLICATIONS
%882;8?5%25 ﬁ} ggggg E}Z}&\Za;tz ;t al. Ahlund, Andreas, “An Approach Toward User-Centric Application
2007/0083645 Al 4/2007 Roeck et al. Mobility,” Master’s Thesis in Computing Science, Umea University,
2007/0254742 Al 11/2007 O_’Brien Umea, Sweden, Aug. 28, 2009 [retrieved online at http://www8.cs.
2008/0005349 Al 1/2008 Lietal. umu.se/education/examina/Rapporter/ AndreasAhlund.pdf on Apr.
omotanty A 300 Sl
2008/0165280 Al 7/2008 Deever et al ' International Application No. PCT/US2013/022295, International
2008/0222659 Al 9/2008 Brumme ' Search Report and Written Opinion mailed Apr. 15, 2013.
2008/0228865 Al 9/2008 Cruzada International Application No. PCT/US2013/059316, International
2008/0301280 Al 12/2008 Chasen et al. Search Report and Written Opinion mailed Mar. 20, 2014.
2009/0109213 Al 4/2009 Hamilton, IT
2009/0158311 Al 6/2009 Hon et al. * cited by examiner

U.S. Patent

Jul. §5,2016

Application
Streaming Chlient

§:9° 00 50 00 65 56 %5 3 ¥ 1 B 5k 08 S0 06 50 0O 05 96 46 W W W W Bt W @

106-1

omzter—Re
Medum

102

uuuuuuuuuuuuuuuuuuu

intermediary Device
112

Application
Streaming Client
106-2

Fixel-Based
Application
Streaming Server
108

00 G0 90 00 30 0> K Xx BLHO

dable

Sheet 1 of 5

US 9,386,057 B2

Application
Streaming Client

106-N

Pixel-Based
Application
Streaming Client
140-1

Pixel-Based
Application
Streaming Client
110-2

FIG. 1

Application Streaming

Server
104

Pirel-Based
Application
Streaming Client
110N

U.S. Patent Jul. 5, 2016 Sheet 2 of 5 US 9,386,057 B2

—~200

;

Application Streaming Server
202

216 —,

WAN
204

E Intermediary Device ; \‘3‘18 Pixel-Based
; 290 ! Application
; ""'""" : Streaming Client
¢ : 210

E Application E

1 Streaming Client £3

; 208 H

¢ 8

: :

' Pixel-Based :

: Application §

¢] Streaming Server |3

; 212 :

[3 8

U.S. Patent

Jul. §5,2016

Sheet 3 of 5

300

US 9,386,057 B2

(App!icaticn Streaming Server 302

Engine

Access Controt Token Definition

Composite

Master image |

Stream-Enabled
Application

316

Computer-Readable Medium Intarface

£,

Bemand Paging Engine
218

or-Readable
Medium
304

Fixel-Based Application Streaming Client 306\\

Computer-Readable Medium Interface

320

Pixel-Bazsed Application Streaming Player

/» Application Streaming Client 308

Computer-Readabie
Mediurmn interface
324

Application Streaming
Player
328

Pixel-Based
Application
Streaming Server
328

Bownload Engine
330

Cache Management
Engine
332

FIG. 3

U.S. Patent

Jul. 5, 2016 Sheet 4 of 5

(409

US 9,386,057 B2

Take Pre-Installation Environment Snapshot

v

Fully Install Application

!

Take Post-instaliation Environment Snapshot

'

Generate Application Snapshot based on
changes to the Environment

'

Provide Application Snapshot to an
Application Streaming Server

FIG. 4

U.S. Patent

Jul. 5, 2016 Sheet 5 of 5

(500

US 9,386,057 B2

Obtain at an App!icaion Streaming Client
portions of a Stream-Enabled Application that
is based on an Application

v

Obtain at the Application Streaming Client an
Application Snapshot for the Application

v

(Obtain at the Application Streaming Client an
Access Control Token for the Application

Execute the Application based on the
Application Snapshot and the portions of the
Stream-Enabled Application obtained

:

Generate Pixel Stream based on the
Executing Application

Y

Provide the Pixel Stream o a Pixsl-based
Application Streaming Client

Y

Receive input for the Executing Application
from the Pixel-based Application Streaming
Client

FIG. 5

US 9,386,057 B2

1
APPLICATION STREAMING AND
EXECUTION SYSTEM FOR LOCALIZED
CLIENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims benefit of U.S. Provisional
Patent Application No. 61/588,102 filed Jan. 18, 2012, which
is incorporated by reference herein.

BACKGROUND

An area of ongoing research and development is applica-
tion delivery to computing devices. One aspect of application
delivery is speed. Current application delivery platforms
enable a device to download an application, which takes as
much time as is required to accomplish the download, fol-
lowed by an installation time. When the application is deliv-
ered from a relatively remote source, additional issues arise.

Another aspect of application delivery is security. Not all
application delivery platforms offer the same amount of secu-
rity in application delivery, piracy prevention, or the like.
Other aspects of application delivery include network utili-
zation, reduced power requirements for devices to which
applications are delivered (and potentially for devices from
which applications are delivered), and application and oper-
ating system performance consistency.

Downloading and installing an application is a simple way
to obtain performance consistency, but this technique has
other shortcomings. For example, there is often no effective
piracy prevention in the delivery mechanism (though there
can be piracy prevention through other techniques). This
technique also means the device onto which the application is
delivered must be capable of storing the application and run-
ning the application with sufficient speed such that users are
not bothered by the performance. Network utilization is also
limited to controlling the download, which essentially only
impacts download times for a device without necessarily
enabling load balancing to improve performance of all
devices. These weaknesses with standard download/install
have led to continuing research into virtual application deliv-
ery solutions.

An area of ongoing research and development is asset
delivery to computing devices, particularly devices largely
designed to provide functionality based through a network
connected (hereafter, referred to as “connected devices”™),
such as smart phones, tablets, and the like.

SUMMARY

The following implementations and aspects thereof are
described and illustrated in conjunction with systems, tools,
and methods that are meant to be exemplary and illustrative,
not necessarily limiting in scope. In various embodiments,
one or more of the above-described problems have been
addressed, while other embodiments are directed to other
improvements.

For various implementations, a first application streaming
client can obtain portions of an application from a application
streaming server, execute the application based on those por-
tions obtained, and provide a second application streaming
client (a pixel-based application streaming client) access to
the executing application using a pixel stream generated
based on output from the executing application. Depending
on the implementation, the first application streaming client
could execute the application, based on the portions obtained,

10

20

25

30

35

40

45

50

55

60

65

2

on behalf of a user at the application streaming client, on
behalf of the pixel-based application streaming client, or
both. In various implementations, the first application stream-
ing client and the second application streaming client can be
communicatively coupled through alocal network (e.g., LAN
or local WiF1), while the first application streaming client and
the application streaming server can be communicatively
coupled through a wider area network (e.g., WAN or MAN).

The foregoing examples of the related art and limitations
related therewith are intended to be illustrative and not exclu-
sive. For example, wireless clients may use different proto-
cols other than WiFi (or IEEE 802.11), potentially including
protocols that have not yet been developed. However, prob-
lems associated with performance may persist. Other limita-
tions of the relevant art will become apparent to those of skill
in the art upon a reading of' the specification and a study of the
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a diagram of an example of an application
streaming system.

FIG. 2 depicts a diagram of an example of an application
streaming system.

FIG. 3 depicts a diagram of an example of an application
streaming system.

FIG. 4 depicts a flowchart of an example of a method for
application streaming.

FIG. 5 depicts a flowchart of an example of a method for
application streaming.

DETAILED DESCRIPTION

FIG. 1 depicts a diagram 100 of an example of an applica-
tion streaming system. In the example of FIG. 1, the diagram
100 includes a computer-readable medium 102, an applica-
tion streaming server 104, application streaming clients
106-1 to 106-N (collectively referred to as “application
streaming clients 106”), a pixel-based application streaming
server 108, and pixel-based application streaming clients
110-1to 110-N (collectively referred to as “pixel-based appli-
cation streaming clients 1107). For illustrative purposes, an
intermediary device 112 is included in the diagram 100 to
show that, e.g., the application streaming client 106-2 can be
implemented on a device on which the pixel-based applica-
tion streaming server 108 is also implemented. Other pixel-
based application streaming servers (not shown) could be
implemented on other intermediary devices (not shown)
along with other ones of the application streaming clients
106.

The computer-readable medium 102, and any other com-
puter-readable medium in this paper, is intended to include a
statutory medium (e.g., in the United States, under 35 U.S.C.
101), and to specifically exclude mediums that are non-statu-
tory in nature to the extent the exclusion is necessary for a
claim that includes the computer-readable medium to be
valid. Known statutory computer-readable mediums include
hardware (e.g., registers, random access memory (RAM),
non-volatile (NV) storage, to name a few), but may or may not
be limited to hardware.

When implemented as or to include a network, the com-
puter-readable medium 102, and any other applicable com-
puter-readable medium in this paper, may include practically
any type of communications network, such as the Internet or
an infrastructure network. The term “Internet” as used in this
paper refers to a network of networks that use certain proto-
cols, such as the TCP/IP protocol, and possibly other proto-

US 9,386,057 B2

3

cols, such as the hypertext transfer protocol (HTTP) for
hypertext markup language (HTML) documents that make up
the World Wide Web (“the web”). For example, the computer-
readable medium 102 can include one or more wide area
networks (WANSs), metropolitan area networks (MANSs),
campus area networks (CANSs), or local area networks
(LANSs); theoretically, the computer-readable medium 102
could be a network of any size or characterized in some other
fashion. Networks can include enterprise private networks
and virtual private networks (collectively, “private net-
works”). As the name suggests, private networks are under the
control of a single entity. Private networks can include a head
office and optional regional offices (collectively, “offices™).
Many offices enable remote users to connect to the private
network offices via some other network, such as the Internet.
The example of FIG. 1 is intended to illustrate a computer-
readable medium 102 that may or may not include more than
one private network.

As used in this paper, the term “computer-readable
medium” is intended to include physical media, such as
would comprise a network, memory or a computer bus.
Accordingly, in some instances, the computer-readable
medium can permit two or more computer-based components
to communicate with each other. For example, as shown in
FIG. 1, the computer-readable medium 102 can include a
network, which can couple together the application streaming
server 104, the application streaming clients 106, the pixel-
based application streaming clients 108, and the pixel-based
application streaming server 110. Through the computer-
readable medium 102, the application streaming server 104,
the application streaming clients 106, the pixel-based appli-
cation streaming clients 108, and the pixel-based application
streaming server 110 can communicate with one another, if
applicable.

In the example of FIG. 1, the application streaming server
104 is coupled to the computer-readable medium 102. In the
example of FIG. 1, the application streaming server 104 pro-
vides an application streaming client with data (e.g., portions
of a stream-enabled application) that enables the application
streaming client to execute the stream-enabled application.

Asunderstood herein, a “stream-enabled application” is an
application (e.g., conventionally-coded application) that is
broken into portions (e.g., blocks, chunks, pages, etc.), such
that the application can be streamed on a per-portion basis to
an application streaming client and the application streaming
client can execute the application based on the streamed
portions. For various implementations, the application
streaming client can initiate execution of a stream-enabled
application once it has received a sufficient number of por-
tions (e.g., portions received reach or surpass an executable
threshold). As it continues execution of the stream-enabled
application, the application streaming can request, and sub-
sequently receive, additional portions of the stream-enabled
application that the application streaming client does not
already possess but possibly needs to continue the execution
of'the application. Generally, an application streaming server,
which comprises some or all of the portions of the stream-
enabled application, fulfills requests by application streaming
clients for additional portions of the stream-enabled applica-
tion. Applications that can be stream-enabled can include
games, document-based software (e.g., word processing or
spreadsheets), operating systems, image-based software,
video-based software, and the like.

In the example of FIG. 1, the application streaming clients
106 are coupled to the computer-readable medium 102. In the
example of FIG. 1, the application streaming server 104 can
provide the application streaming clients 106 with data (e.g.,

20

25

35

40

45

4

portions of a stream-enabled application) that enables the
application streaming clients 106 to execute the stream-en-
abled application, if the application streaming clients are
appropriately configured. Depending on the implementation,
the application streaming clients 106 can execute a stream-
enabled application for use by users local to the applications
streaming clients 102, for providing a pixel-based application
streaming client with pixel-data for access (“pixel-based
access”) to the executed stream-enabled application, or both.
For some implementations, the pixel-based access can com-
prise providing a pixel stream, generated based on the execut-
ing stream-enabled application, to the pixel-based streaming
client. The pixel stream can be directly generated by the
stream-enabled application as it executed, or can be generated
by way of a pixel-based application streaming server.

In the example of FIG. 1, the pixel-based application
streaming server 108 is coupled to the computer-readable
medium 102. Depending on the implementation, the pixel-
based application streaming server 108 can be implemented
on the intermediary device 112 along with, e.g., the applica-
tion streaming client 106-2, as shown for illustrative purposes
in FIG. 1, or can be implemented on a device on which none
of'the application streaming clients 106 are implemented. The
pixel-data associated with an executing stream-enabled
application and served by the pixel-based application stream-
ing server 108 can be based on output produced by the stream-
enabled application as it is executed. Depending on the imple-
mentation, the pixel-based access can be facilitated using
existing, pixel-based remote computing technologies, such as
Remote Desktop Protocol (RDP), Remote Graphics Software
(RGS), and the like.

In the example of FIG. 1, the pixel-based application
streaming clients 110 are coupled to the computer-readable
medium 102. In the example of FIG. 1, the pixel-based appli-
cation streaming server 108 can provide pixel-based access of
a stream-enabled application to pixel-based application
streaming clients 110. For some implementations, the pixel-
based application streaming server 108 can be employed to
provide pixel-based access based on the stream-enabled
application executing on, e.g., the application streaming cli-
ent 106-2. Upon receiving the pixel-based access to the
executing stream-enabled application, the pixel-based appli-
cation streaming clients 110 can locally display a video-based
output, at the pixel-based application streaming clients 110,
based on pixel-data received.

In some implementations, the pixel-based application
streaming server 108 can use resources of the intermediary
device 112, such as local computing resources (e.g., graphics
processing unit—GPU), to execute a stream-enabled appli-
cation on behalf of a subset of the pixel-based application
streaming clients 110. There are additional advantages with
this approach when the subset comprises one or more of the
pixel-based application streaming clients 110 that are in close
network distance to the intermediary device 112. In this way,
various implementations can shift the source of pixel stream-
ing to somewhere closer to the pixel-based applications
streaming clients 110 on the network, and can obviate the
need for GPU-equipped servers in some instances (e.g., tra-
ditional pixel-based game streaming).

For illustrative purposes, the application streaming server
104 is described in this example as serving content. Accord-
ingly, in this example, the application streaming server 104
can be referred to as a content server. A web server, which is
one type of content server, is typically at least one computer
system that operates as a server computer system and is
configured to operate with the protocols of the World Wide
Web and is coupled to the Internet. Unless context dictates

US 9,386,057 B2

5

otherwise, a server as used in this paper includes at least a
portion of a computer system running server software.

Unless context dictates otherwise, a “server” as used in this
paper includes at least a portion of a computer system running
server software. Likewise, unless stated otherwise, a “client”
as used in this paper includes at least a portion of a computer
system running client software. A “computer system,” as used
in this paper, is intended to be construed broadly. In general,
a computer system will include a processor, memory, non-
volatile storage, and an interface. A typical computer system
will usually include at least a processor, memory, and a device
(e.g., a bus) coupling the memory to the processor.

The “processor” can be, for example, a general-purpose
central processing unit (CPU), such as a microprocessor, or a
special-purpose processor, such as a microcontroller.

The “memory” can include, by way of example but not
limitation, random access memory (RAM), such as dynamic
RAM (DRAM) and static RAM (SRAM). The memory can
be local, remote, or distributed. As used in this paper, the term
“computer-readable storage medium” is intended to include
only physical media, such as memory. As used in this paper,
a computer-readable medium is intended to include all medi-
ums that are statutory (e.g., in the United States, under 35
U.S.C. 101), and to specifically exclude all mediums that are
non-statutory in nature to the extent that the exclusion is
necessary for a claim that includes the computer-readable
medium to be valid. Known statutory computer-readable
mediums include hardware (e.g., registers, random access
memory (RAM), non-volatile (NV) storage, to name a few),
but may or may not be limited to hardware.

The bus can also couple the processor to the non-volatile
storage. The non-volatile storage is often a magnetic floppy or
hard disk, a magnetic-optical disk, an optical disk, a read-only
memory (ROM), such as a CD-ROM, EPROM, or EEPROM,
amagnetic or optical card, or another form of storage for large
amounts of data. Some of this data is often written, by a direct
memory access process, into memory during execution of
software on the computer system. The non-volatile storage
can be local, remote, or distributed. The non-volatile storage
is optional because systems can be created with all applicable
data available in memory.

Software is typically stored in the non-volatile storage.
Indeed, for large programs, it may not even be possible to
store the entire program in the memory. Nevertheless, it
should be understood that for software to run, if necessary, it
is moved to a computer-readable location appropriate for
processing, and for illustrative purposes, that location is
referred to as the memory in this paper. Even when software
is moved to the memory for execution, the processor will
typically make use of hardware registers to store values asso-
ciated with the software, and local cache that, ideally, serves
to speed up execution. As used herein, a software program is
assumed to be stored at any known or convenient location
(from non-volatile storage to hardware registers) when the
software program is referred to as “implemented in a com-
puter-readable storage medium.” A processor is considered to
be “configured to execute a program” when at least one value
associated with the program is stored in a register readable by
the processor.

In one example of operation, a computer system can be
controlled by operating system software, which is a software
program that includes a file management system, such as a
disk operating system. One example of operating system
software with associated file management system software is
the family of operating systems known as Windows® from
Microsoft Corporation of Redmond, Wash., and their associ-
ated file management systems. Another example of operating

30

40

45

55

6

system software with its associated file management system
software is the Linux operating system and its associated file
management system. The file management system is typi-
cally stored in the non-volatile storage and causes the proces-
sor to execute the various acts required by the operating
system to input and output data and to store data in the
memory, including storing files on the non-volatile storage.

The bus can also couple the processor to the interface. The
interface can include one or more input and/or output (1/O)
devices. The I/O devices can include, by way of example but
not limitation, a keyboard, a mouse or other pointing device,
disk drives, printers, a scanner, and other I/O devices, includ-
ing a display device. The display device can include, by way
of example but not limitation, a cathode ray tube (CRT),
liquid crystal display (LCD), or some other applicable known
or convenient display device. The interface can include one or
more of a modem or network interface. It will be appreciated
that a modem or network interface can be considered to be
part of the computer system. The interface can include an
analog modem, isdn modem, cable modem, token ring inter-
face, satellite transmission interface (e.g. “direct PC”), or
other interfaces for coupling a computer system to other
computer systems. Interfaces enable computer systems and
other devices to be coupled together in a network.

FIG. 2 depicts a diagram of an example of an application
streaming system. In the example of FIG. 2, the diagram 200
includes an application streaming server 202, a WAN 204, a
LAN 206, an application streaming client 208, an pixel-based
application streaming client 210, and a pixel-based applica-
tion streaming server 212. For illustrative purposes only, the
application streaming client 208 and the pixel-based applica-
tion streaming server 212 are depicted as implemented on an
intermediary device 220, but in alternative implementations,
the application streaming client 208 and the pixel-based
application streaming server 212 could be implemented on
separate devices.

In FIG. 2, the application streaming server 202 and the
LAN 206 are coupled to the WAN 204, and the application
streaming client 208, the pixel-based application streaming
client 210, and the pixel-based application streaming server
212 are coupled to the LAN 206. The WAN 204 and the LAN
206 represent just two examples of computer-readable medi-
ums that facilitate communication between the various enti-
ties shown in FIG. 2. For example, through the WAN 204 and
the LAN 206, the application streaming server 202 can com-
municate with application streaming client 208. Likewise,
through the LAN 206, the pixel-based application streaming
server 212 can communicate with the pixel-based application
streaming client 210.

Different implementations can utilize different configura-
tions of computer-readable mediums to facilitate communi-
cation between various components. For example, in the
alternative in which the application streaming client 208 and
the pixel-based application streaming server 212 are imple-
mented on distinct devices, the application streaming client
208 and the pixel-based application streaming server 212 can
communicate via the LAN 206 or some other computer-
readable medium (not shown). As another example, the pixel-
based application streaming server 212 and the pixel-based
application streaming client 210 can communicate via an
infrastructure or ad hoc wireless network.

In the example of FIG. 2, the application streaming server
202 comprises a stream-enabled application 214, which is an
application (e.g., conventionally-coded application) that is
broken into portions (e.g., blocks, chunks, pages, etc.), such
that the application can be streamed on a per-portion basis to
an application streaming client and the application streaming

US 9,386,057 B2

7

client can execute the application based on the streamed
portions. For example, as shown in FIG. 2, the application
streaming server 202 can stream portions 1,2, 3 (referred to as
“portions 216) to the application streaming client 208
through the WAN 204 and the LAN 206. Assuming that the
portions 216 are enough for the application streaming client
208 to initiate execution of the stream-enabled application
214, the application streaming client 208 can do so upon
receiving the portions 216. If, however, additional portions of
the stream-enabled application 216 are needed before the
stream-enabled application 216 can be initiated, the applica-
tion stream client 208 can request, and subsequently receive,
those portions from the application streaming server 202
(e.g., until the portions received reach or surpass an execut-
able threshold for the stream-enabled application 214).

As the application streaming client 208 executes the
stream-enabled application 214 (e.g., based on the portions it
requests and receives from the application streaming server
202), the pixel-based application streaming server 212 can
generate a pixel stream based on the output produced by the
executing stream-enabled application. Through the LAN
206, the pixel-based application streaming server 212 can
provide the pixel-based applications streaming client 210
with the generated pixel stream 218. The pixel-based appli-
cation streaming client 210, in turn, can utilize the generated
pixel stream 218 to gain pixel-based access to the stream-
enabled application 214 executing on the application stream-
ing client 208. By providing pixel-based access in this man-
ner, some implementations allow the source of pixel-based
access to be shifted from GPU-equipped servers that execute
an application behalf of a client, to a GPU-equipped applica-
tion streaming client that is typically located in closer net-
work distance to the client receiving access than the GPU-
equipped servers.

FIG. 3 depicts a diagram 300 of an example of an applica-
tion streaming system. In the example of FIG. 3, the diagram
300 includes an application streaming server 302, a com-
puter-readable medium 304, a pixel-based application
streaming client 306, and an application streaming client 308.
In some instances, the computer-readable medium 304 can
permit two or more computer-based components to commu-
nicate with each other. For example, as shown in FIG. 3, the
computer-readable medium 304 can include a network,
which can couple together, and facilitate communication
between, the application streaming server 302, the pixel-
based application streaming client 306, and the application
streaming client 308.

In the example of FIG. 3, the application streaming server
302 includes an access control token definition engine 310 a
composite master image datastore 312, a stream-enabled
application datastore 314, a computer-readable medium
interface 316, and a demand paging engine 318. The com-
puter-readable interface 316 can be implemented as an appli-
cable known or convenient interface sufficient to enable the
application streaming server 302 communication with or
through the computer-readable medium 304. For example,
where the computer-readable medium 304 includes a net-
work, the computer-readable medium interface 316 could
include a wired or wireless network interface card (NIC).

The demand paging engine 318 is responsible for stream-
ing portions of a stream-enabled application (e.g., to the
application streaming client 308) using a demand paging
technique. As used in this paper, an “engine” includes a dedi-
cated or shared processor and, typically, firmware or software
modules that are executed by the processor. Depending upon
implementation-specific or other considerations, an engine
can be centralized or its functionality distributed. An engine

10

15

20

25

30

35

40

45

50

55

60

65

8

can include special purpose hardware, firmware, or software
embodied in a computer-readable medium for execution by
the processor.

The composite master image datastore 312 includes one or
more images that can be provided to the application streaming
clients 308. The images include application snapshots on top
of'a machine. Thus, the images can be referred to as “appli-
cation snapshots.” Application snapshots can be made por-
table across at least some machines (or OSs if the application
is sufficiently neutral, such as Java®). A snapshot engine (not
shown) can take an initial snapshot of an environment before
the application is run (unless the snapshot engine has access
to an installation file from which an application install can be
deconstructed, such as Android) then after installation in the
cloud. The resultant package, the application snapshot, can be
invoked on a device or in the cloud using the environment
snapshot, if needed.

A datastore can be implemented, for example, as software
embodied in a physical computer-readable medium on a gen-
eral- or specific-purpose machine, in firmware, in hardware,
in a combination thereof, or in an applicable known or con-
venient device or system. Datastores in this paper are
intended to include any organization of data, including tables,
comma-separated values (CSV) files, traditional databases
(e.g., SQL), or other applicable known or convenient organi-
zational formats. Datastore-associated components, such as
database interfaces, can be considered “part of” a datastore,
part of some other system component, or a combination
thereof, though the physical location and other characteristics
of datastore-associated components is not critical for an
understanding of the techniques described in this paper.

Datastores can include data structures. As used in this
paper, a data structure is associated with a particular way of
storing and organizing data in a computer so that it can be
used efficiently within a given context. Data structures are
generally based on the ability of a computer to fetch and store
data at any place in its memory, specified by an address, a bit
string that can be itself stored in memory and manipulated by
the program. Thus some data structures are based on comput-
ing the addresses of data items with arithmetic operations;
while other data structures are based on storing addresses of
data items within the structure itself. Many data structures use
both principles, sometimes combined in non-trivial ways.
The implementation of a data structure usually entails writing
a set of procedures that create and manipulate instances of
that structure.

The demand paging engine 318 can deliver partial or full
images from the composite master image datastore 312 to the
application streaming client 308, including application snap-
shots. For some implementations, the demand paging engine
318 can also providing the application streaming client 308
with portions (e.g., jumpstart, prefetch, and/or predicted) of
the stream-enabled application of an application that the
application streaming client 308 is executing or is intending
to execute. Accordingly, the demand paging engine 318 can,
in some implementations, fulfill request for portions of
stream-enabled application as they are received from the
application streaming client 308. The demand paging engine
318 can provide the portions of the stream-enabled applica-
tion from the stream-enabled application datastore 314.

The access control token definition engine 310 generates
tokens to define access policies for the application streaming
client 308. In a specific implementation, the access control
includes digital rights management (DRM) functionality.

In the example of FIG. 3, the pixel-based application
streaming client 306 includes a computer-readable medium
interface 324, and a pixel-based application streaming player

US 9,386,057 B2

9

322. The computer-readable medium interface 324 can be
implemented as an applicable known or convenient interface
sufficient to enable the application streaming client 308 to
communicate with or through the computer-readable medium
304.

The pixel-based application streaming player 322 can pro-
vide pixel-based access to a stream-enabled application
executing at an application streaming client (e.g., the appli-
cation streaming client 308), possibly on behalf of the pixel-
based application streaming client 306. In providing pixel-
based access, the pixel-based application streaming player
322 can receive from the application streaming client 308 a
pixel stream based on output from the stream-enabled appli-
cation executing at the application streaming client 308. The
pixel-based application streaming player 322 can further dis-
play the pixel stream to a user at the pixel-based application
stream client 306, for example, via a video display coupled to
the client 306. For some implementations, the pixel-based
application streaming player 322 can also facilitate receiving
input at the pixel-based application streaming client 306, and
providing the received input to the application streaming
client executing the stream-enabled application (e.g., the
application streaming client 308).

In the example of FIG. 3, the application streaming client
308 includes a computer-readable medium interface 324, an
application streaming player 326, a pixel-based application
streaming server 328, a download engine 330, a cache man-
agement engine 332, and a cache 334 datastore. The applica-
tion streaming client 308 can also include a file system driver
(FSD) (not shown), for example, to facilitate the application
streaming player’s 326 access to portions of the stream-en-
abled application (e.g., file resources of the application) dur-
ing application executing. The computer-readable medium
interface 324 can be implemented as an applicable known or
convenient interface sufficient to enable the application
streaming client 308 to communicate with or through the
computer-readable medium 304.

The download engine 330 can obtain an application snap-
shot from the application streaming server 302. The applica-
tion snapshot informs the application streaming client 308 of
what characteristics the application would have if installed on
the application streaming client 308. The application snap-
shot also assists the application streaming client 308 with
identifying what portions of the stream-enabled application
are needed for the application to execute on the application
streaming client 308 as if the applicable application is
installed on the application streaming client 308. This enables
the applications streaming client 308 to act as if the applicable
application is installed on the application streaming client
308 even when it is not. The download engine 330 can also
obtain jumpstart partials, which include portions of the
stream-enabled application that allow execution of the appli-
cation to initiate and/or that have been determined to cause
potential delay if not downloaded before the start of the
streamed application (e.g., portions of the application that are
inevitably run during an early part of an application’s execu-
tion). The download engine 330 can include a content
prefetcher that obtains portions of the streamed application in
anticipation of needing the portions soon, or at least at some
point in the future. The sensitivity of the content prefetcher
(i.e., the probability that a portion of an application will be
considered “likely” to be used soon or at least at some point in
the future) can be configurable or unconfigurable, depending
upon the implementation.

The application streaming player 326 can run the stream-
enabled application as if it were installed on the application
streaming client 308. As used in this paper, installed is

10

15

20

25

30

40

45

50

55

60

65

10

intended to mean “fully installed” such that executing the
streamed application would not result in a system crash if an
uninstalled portion of the application were accessed. As used
in this paper, an application is intended to mean an executable
(not simply data) program with at least one branch instruc-
tion. Due to the implementation of the downloaded applica-
tion snapshot, the application streaming player 326 “thinks”
that the application is installed on the machine. In addition,
the application streaming player 326 can capture requests for
portions of the streamed application (or data) that are not
locally available and instruct the download engine 330 to
obtain the portions of the streamed application that are not
locally available.

In a specific implementation, the application streaming
player 326 implements an access control policy from the
application streaming server 302. The application streaming
player 326 can enforce, for example, DRM policies.

The cache management engine 332 can manage the cache
datastore 334 to enable the application streaming player 326
to satisfy requests using portions of the streamed application
in the cache datastore 334. The download engine 330 can
provide additional portions of the streamed application to the
cache datastore 334 over time. The cache management engine
332 can clear portions of the cache datastore 334 over time in
accordance with a cache management protocol (e.g., older
entries can be deleted before newer entries).

The pixel-based application streaming server 328 can gen-
erate a pixel stream based on the output from the stream-
enabled application being executed by the application
streaming player 326, and can provide the generated pixel
stream to the pixel-based application streaming client 306. In
certain implementations, the pixel-based application stream-
ing server 328 can generate the pixel stream based on the
video output generated by the stream-enabled application as
it executes, but other forms of outputs could also be utilized in
the pixel stream generations. The pixel-based application
streaming server 328 can utilize applicable known or conve-
nient pixel streaming technologies in generating the pixel
stream, including Remote Desktop Protocol (RDP), Remote
Graphics Software (RGS), and the like. The pixel-based
application streaming server can also receive, from the pixel-
based application client 306, input (e.g., user-based input)
associated with the stream-enabled application being
executed and pixel-streamed to the pixel-based application
streaming 306. The pixel-based application streaming server
328 can provide the input to the application streaming player
326, which, in turn, could provide them to the executing
stream-enabled application. The executing stream-enabled
application could act upon the input provided, the video out-
put being provided to the pixel-based application streaming
server 328 could change to reflect the action, and the pixel
stream being generated by the pixel-based application
streaming server 328 could also change accordingly.

FIG. 4 depicts a flowchart 400 of an example of a method
for application streaming. In the example of F1G. 4, the flow-
chart 400 starts at module 402 with taking a pre-installation
environment snapshot of an computing environment in which
an application (e.g., conventionally-coded application) will
be installed. Taking a pre-installation snapshot can be
optional in the sense that some environments include an
adequate installation log that enables an engine to determine
what changes an application have made to the computing
environment when the application is installed.

In the example of FIG. 4, the flowchart 400 continues to
module 404 with the full installation of the application. Due
to the nature of streaming, it is important to ensure that an
application streaming content consumer not crash when a

US 9,386,057 B2

11

request for a portion of the application (e.g., file resource of
the application) is not present. Accordingly, a full installation
can be needed to create an application snapshot of the appli-
cation, even if the application is never fully streamed in its
entirety.

In the example of FIG. 4, the flowchart 400 continues to
module 406 with taking a post-installation environment snap-
shot of the computing environment after the application has
completed installation therein. Again, taking the post-instal-
lation snapshot can be optional in the sense that some envi-
ronments include an adequate installation log.

In the example of FIG. 4, the flowchart 400 continues to
module 408 with determining application snapshot based on
changes to the computing environment. If there is an adequate
installation file, the application snapshot can be determined
from the file. If not, the application snapshot can be deter-
mined at least in part from the differences in a pre- and
post-installation environment snapshot. In some cases, addi-
tional processing can be required to create an application
snapshot due to deficiencies in some computer self-monitor-
ing engines.

In the example of FIG. 4, the flowchart 400 continues to
module 410 with providing application snapshot to an appli-
cation streaming server. The application streaming server can
subsequently provide the application snapshot to an applica-
tion streaming client and can provide, with the application
snapshot, a compatible configuration to enable the applica-
tion streaming client to request additional portions of appli-
cation (e.g., file resources of the application) in the normal
course of the on-client (local) execution of the application
even if the file resources are not on the application streaming
client. Those skilled in the art will appreciate that the portions
of the application provided to the applications streaming cli-
ent can be from a stream-enabled version of the application.

FIG. 5 depicts a flowchart 500 of an example of a method
for application streaming. In the example of FI1G. 5, the flow-
chart 500 starts at module 502 with obtaining at an application
streaming client portions of a stream-enabled application that
is based on an application that is to be executed (e.g., at an
applications streaming client). As noted herein, a stream-
enabled application is an application (e.g., conventionally-
coded application) that is broken into portions (e.g., blocks,
chunks, pages, etc.), such that the application can be streamed
on a per-portion basis to an application streaming client and
the application streaming client can execute the application
based on the streamed portions.

An application streaming server can provide a subset of the
portions to the application streaming client. The subset can
include one or more jumpstart portions (also referred to
herein as “jumpstart partials™) of the stream-enabled applica-
tion, prefetch portions of the stream-enabled application, pre-
dicted portions of the stream-enabled application (e.g., based
on heuristics and/or portions fetches during previous execu-
tions), and/or one or more of the other portions of the stream-
enabled application. For some implementations, the jump-
start portions can comprise sufficient portions of the
application that permits an application streaming client to
initiate execution of the application (e.g., for the first time on
the application streaming client) without the remaining por-
tions of the application. For some implementations, the por-
tions of the application are made available after an application
has been stream-enabled (e.g., broken up into portions) and
the jumpstart portions have been identified (e.g., using the
application snapshots).

In a specific implementation, the application streaming
client can be allowed to store all of the portions of a stream-
enabled application or can be prevented from storing all of the

10

15

20

25

30

35

40

45

50

55

60

65

12

portions of the stream-enabled application to make piracy
more difficult (by not making all portions of the stream-
enabled application readily available in a single location), to
conserve resources at the proxy, or for other reasons. For
some implementations, the application client stores portions
requested and obtained in a cache (e.g., for possible execution
when the application streaming client is offline with respect to
the application streaming server).

In the example of FIG. 5, the flowchart 500 continues to
module 504 with obtaining at the application streaming client
an application snapshot for the application. The application
snapshot could be received from an application snapshot
engine, which conceptually can be part of an application
streaming server. In some implementations, the application
snapshot could be provided through some other input device,
such as removable storage. As noted herein, the application
snapshot can enable an application streaming client to request
portions of the stream-enabled application that are not
already on the application streaming client (e.g., portions of
the stream-enabled application that are needed in order to
continue execution of the application). For some implemen-
tations, the requests for portions of the stream-enabled appli-
cation could be provided by an application streaming client.

In the example of FIG. 5, the flowchart 500 continues to
module 506 with obtaining at the applications streaming cli-
ent an access control token for the application. The access
control token can be received from an access control token
server, which can conceptually be considered part of an appli-
cation streaming server. In some implementations, the access
control token could be provided through some other input
device, such as removable storage. Generally, the access con-
trol token obtained can determine the level of access to the
application to be executed by an application client server. For
example, the access control token can determine whether an
application streaming client can initiate execution of the
application and/or continue execution of an application (e.g.,
past a certain time after the jumpstart portions have been
received and executed).

In the example of FIG. 5, the flowchart 500 continues to
module 508 with executing the application based on the appli-
cation snapshot and the portions of the stream-enabled appli-
cation obtained. Generally, execution of the application can
be initiated at the application streaming client once the jump-
start portions of the stream-enabled application are received.
For some implementations, the execution of the application
could be initiated in a virtual computing environment residing
on the application streaming client. For some implementa-
tions, the application streaming client can be executing the
application on behalf of another client to which the applica-
tion streaming client intends to provide pixel-based access to
the executing application (e.g., on behalf of a pixel-based
application streaming client), can be executing the applica-
tion for use (e.g., by a user) at the application streaming client,
or both.

Once executed, the application can continue execution of
the application based on the additional portions of the stream-
enabled application identified and obtained in accordance
with the application snapshot. For example, the application
streaming client can continue execution of the application
based on the portions requested and obtained from the appli-
cation streaming server necessary for the execution to not
crash/halt (e.g., based on a lack of a needed file resource).

In the example of FIG. 5, the flowchart 500 continues to
module 510 with generating a pixel stream based on the
executing application. The pixel stream could be generated by
apixel-based application streaming server, which can receive

US 9,386,057 B2

13

an output (e.g., video output) from the application executing
on the application streaming client.

In the example of FIG. 5, the flowchart 500 continues to
module 512 with providing the pixel stream generated to a
pixel-based application streaming client. The pixel-based
applications streaming client can be configured to receive the
pixel stream and display at the pixel-based application
streaming client (e.g., through a video screen) the video out-
put represented by the pixel stream. In doing so, the pixel-
based application stream client can gain pixel-based access to
the application executing on the application streaming client.

In the example of FIG. 5, the flowchart 500 continues to
module 514 with receiving from the pixel-based application
streaming client input for the executing application. The input
received could be user-based input received at the pixel-based
application streaming client in association with an applica-
tion thatis executing on the application streaming client (e.g.,
on behalf of the pixel-based application streaming client) and
being pixel-streamed to the pixel-based application stream-
ing client. User-based input received from the pixel-based
application streaming client could include input received
through a physical peripheral (e.g., keyboard, mouse, joy-
stick, and the like) coupled to the pixel-based application
streaming client and/or a virtual peripheral (e.g., on-screen
keyboard) provided by the pixel-based application streaming
client.

As discussed herein, depending on the implementation, the
pixel-based access can be facilitated using existing, pixel-
based remote computing technologies, such as Remote Desk-
top Protocol (RDP), Remote Graphics Software (RGS), and
the like.

Asused herein, the term “embodiment” means an embodi-
ment that serves to illustrate by way of example but not
limitation. The techniques described in the preceding text and
figures can be mixed and matched as circumstances demand
to produce alternative embodiments.

We claim:
1. A method comprising:
receiving portions of a stream-enabled application from an
application streaming server at an application streaming
client, wherein the stream-enabled application is a
stream-enabled version of a non-stream-enabled appli-
cation;
playing the stream-enabled application at an application
streaming player using the portions of the stream-en-
abled application from the application streaming server;

generating a pixel stream associated with playing the
stream-enabled application at the application streaming
player;
serving the pixel stream from a pixel-based application
streaming server coupled to the application streaming
player to a pixel-based application streaming client;

receiving user input from a user in interacting with the
pixel stream as if the user is interacting with the stream-
enabled application residing locally at the pixel-based
application streaming client;

playing the stream-enabled application according to the

user input;

modifying the pixel stream associated with the playing of

the stream-enabled-application according to the user
input.

2. The method of claim 1, further comprising receiving an
application snapshot for the stream-enabled application,
wherein playing the stream-enabled application includes
using the application snapshot.

25

40

45

60

14

3. The method of claim 1, further comprising continuing
playing the stream-enabled application based on subse-
quently received portions of the stream-enabled application.

4. The method of claim 1, wherein the pixel stream is
generated from output of the stream-enabled application as
the stream-enabled application is played at the application
streaming player.

5. The method of claim 4, wherein the output includes a
video component.

6. The method of claim 1, wherein the pixel stream is
generated using output of the stream-enabled application.

7. The method of claim 6, wherein the pixel stream
includes a video component.

8. The method of claim 1, further comprising receiving, at
the application streaming player, input for the stream-enabled
application.

9. The method of claim 8, wherein the input is received
from the pixel-based application streaming client.

10. The method of claim 1, further comprising obtaining, at
the application streaming client, an access control token for
playing the stream-enabled application, wherein the stream-
enabled application is played at the application streaming
client by the application streaming player in accordance with
the access control token.

11. A system comprising:

a download engine device; an application streaming
player; a pixel-based application streaming server;
wherein, in operation:

the download engine device obtains an application snap-
shot for an application, wherein the application snapshot
enables the system to request portions of a stream-en-
abled application that are not on the system, wherein the
stream-enabled application is a stream-enabled version
of a non-stream-enabled application;

the download engine device obtains portions of the stream-
enabled application, wherein the portions of the stream-
enabled application enable playing of the non-stream-
enabled application;

the application streaming player plays the stream-enabled
application using the application snapshot and the por-
tions of the stream-enabled application;

the pixel-based application streaming server: generates a
pixel stream associated with playing the stream-enabled
application at the application streaming player;

serves the pixel stream from playing the stream-enabled
application to a pixel-based application streaming cli-
ent;

the application streaming player further: receives user
input from a user in interacting with the pixel stream as
if the user is interacting with the stream-enabled appli-
cation residing locally at the pixel-based application
streaming client;

plays the stream-enabled application according to the user
input;

the pixel-based application streaming server further modi-
fies the pixel stream associated with the playing of the
stream-enabled-application according to the user input.

12. The system of claim 11, wherein the application
streaming player initiates playing the stream-enabled appli-
cation using the application snapshot.

13. The system of claim 11, wherein the portions of the
stream-enabled application are first portions of the stream-
enabled application, wherein the application streaming
player continues playing the stream-enabled application
using second portions of the stream-enabled application.

14. The system of claim 11, wherein, in operation, the
pixel-based application streaming server generates the pixel

US 9,386,057 B2

15

stream based on the playing of the stream-enabled application
by the application streaming player.

15. The system of claim 14, wherein the pixel stream is
generated based on output from the playing of the stream-
enabled application.

16. The system of claim 11, wherein, in operation, the
pixel-based application streaming server receives input for
the streaming application player while the stream-enabled
application is played.

17. The system of claim 11, wherein, in operation, the
pixel-based application streaming server receives input for
the stream-enabled application.

18. The system of claim 11, wherein, in operation, the
application streaming player plays the stream-enabled appli-
cation in a virtual executing environment.

19. The system of claim 11, wherein, in operation, the
application streaming player obtains an access control token
for the stream-enabled application, and the application
streaming player plays the stream-enabled application in
accordance with the access control token.

#* #* #* #* #*

10

15

20

16

